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Resonating Valence Bond Wave Functions for Strongly Frustrated Spin Systems
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The resonating-valence-bond (RVB) theory for two-dimensional quantum antiferromagnets is shown
to be the correct paradigm for large enough “quantum frustration.” This scenario, proposed a long time
ago but never confirmed by microscopic calculations, is strongly supported by a new type of variational
wave function, which is extremely close to the exact ground state of the J1 2 J2 Heisenberg model for
0.4 & J2�J1 & 0.5. This wave function is proposed to represent the generic spin-half RVB ground state
in spin liquids.
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The question of whether a frustrated spin-half system is
well described by a spin-liquid ground state (GS)—with
no type of crystalline order —25 years after the first pro-
posal [1] is still controversial, mainly because of the lack
of reliable analytical or numerical solutions of model sys-
tems. For unfrustrated or weakly frustrated quantum an-
tiferromagnets a deep understanding of the nature of the
GS together with a quantitative description of the ordered
phase is obtained by including Gaussian quantum fluctu-
ations over a classical Néel state [2,3]. For sizable frus-
tration, instead, this description is known to break down.
However, the short-range resonating-valence-bond (RVB)
state [4] does not prove a good starting point for the de-
scription of frustrated models; it rather turns out to be the
exact GS of ad hoc Hamiltonians [4–6].

As a prototype of a realistic frustrated two-dimensional
system, which has been recently realized experimentally
in Li2VOSiO4 compounds [7], we investigate the spin-
half Heisenberg model with nearest (J1) and next-nearest
neighbor (J2) superexchange couplings:
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on an N-site square lattice with periodic boundary con-
ditions. In the (J2 � 0) unfrustrated case, it is well es-
tablished that the GS of the Heisenberg Hamiltonian has
Néel long-range order, with a sizable value of the anti-
ferromagnetic order parameter [8]. However, variational
studies [9] have shown that disordered, long-range RVB
states have energies very close to the exact one. It is there-
fore natural to imagine that by turning on the next-nearest
neighbor interaction J2, the combined effect of frustration
and zero-point motion may eventually melt antiferromag-
netism and stabilize a nonmagnetic GS of purely quantum-
mechanical nature. Indeed, for 0.4 & J2�J1 & 0.6 there is
a general consensus on the disappearance of the Néel order
towards a state whose nature is still much debated [10].

In a seminal paper [11], Anderson proposed that a
physically transparent description of a RVB state can be
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obtained in fermionic representation by starting from a
BCS-type pairing wave function (WF), of the form
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This WF is the GS of the well-known BCS Hamiltonian
with a given (real) gap function Dk � D2k provided the
Fourier transform fk of the pairing function, fi,j, satisfies:
fk � Dk��ek 1

p
e2

k 1 D2
k �, where ek � 22�coskx 1

cosky� is the free-electron dispersion. The nontrivial char-
acter of this WF emerges when we restrict to the subspace
of a fixed number of electrons (equal to the number of
sites) and enforce Gutzwiller projection onto the subspace
with no double occupancies: singlet pairs do not overlap
in real space and this WF can be described by a super-
position of valence bond (VB) states [11–13]. Though
this WF has been already studied for the pure Heisenberg
model by several authors [12,13] for Dk ~ �coskx 2
cosky�, here we show that this type of RVB state rep-
resents an extremely accurate variational ansatz for
frustrated systems.

A definite symmetry is guaranteed to the projected BCS
(p-BCS) state provided the gap function Dk transforms
according to a one-dimensional representation of the spa-
tial symmetry group. A careful analysis [14], similar to
the one carried out in [13], shows that the odd compo-
nent of the gap function Dk � 2Dk1�p,p� may have spa-
tial symmetries different from those of the even component
Dk � Dk1�p,p�. We anticipate that the best variational en-
ergy is obtained when the former has dx22y2 symmetry,
whereas the latter either vanishes or it has dxy symme-
try. In frustrated models, it is important to consider this
generalization of the originally proposed WF [11,12], be-
cause only in this way it is possible to reproduce correctly
the phases of the actual GS configurations. In the unfrus-
trated case it is well known that such phases are deter-
mined by the so-called Marshall-sign: on each real space
configuration jx�, the sign of the GS wave function is de-
termined only by the number of spin down in one of the
© 2001 The American Physical Society 097201-1
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two sublattices. This feature, rigorously valid for J2 � 0,
turns out to be a very robust property for weak frustration
(J2�J1 & 0.3) [15]. However, it is clearly violated when
frustration plays an important role.

In order to determine the best variational WF of this
form we have used a recently developed quantum Monte
Carlo (QMC) technique [16] that allows one to optimize
a large number of variational parameters with modest
computational effort. We first consider the largest square
cluster N � 6 3 6 where the exact GS can be numerically
determined by exact diagonalization (ED). In order to
show the quality of the present WF when frustration
(J2�J1) is increased, we have computed the variational
energy, the overlap of the p-BCS wave function with
the exact GS, jc0�, and the average sign, defined for a
generic variational state jcV � as �S� �

P
x j�x jcV�j2 3

Sgn��x jcV� �x jc0��. The Marshall sign (i.e., �S� � 1 for
J2 � 0) is obtained using the p-BCS wave function, with
only the dx22y2 component. However, for J2�J1 * 0.4,
the phases of the WF are considerably affected by the
strong frustration and only when a sizable dxy component
is stabilized at the variational level, this property can be
correctly reproduced, as clearly shown in Fig. 1. Remark-
ably, as shown in the same figure, this kind of WF is not
only in qualitative agreement with the exact solution, but
it is also impressively accurate in the region J2�J1 �
0.45 6 0.05 of large frustration, where the overlap of
the variational WF is improved by more than an order
of magnitude with respect to the J2 � 0 case. This fact
implies that the GS in the strongly frustrated regime is
almost exactly reproduced by a RVB wave function, at
least on clusters of this size.

FIG. 1. Average sign, accuracy of the GS energy, and overlap
between the GS and the p-BCS state (full dots) as a function of
J2�J1, for N � 6 3 6. Empty dots are the Marshall sign (top
panel), and the energy accuracy of a Néel ordered spin-wave WF
[3] (middle panel). Lines are guides for the eye and the shaded
region indicates the location of the expected transition point to
the nonmagnetic phase.
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Further indications of the changes in the nature of the GS
occurring by increasing the frustration ratio can be found
in the ordering of states with different quantum numbers in
the energy spectrum [17]. This information can be easily
accessed by ED, which has been performed on the 6 3 6
cluster for three representative values of the frustration ra-
tio: J2�J1 � 0.2; 0.5; 0.8. In the case of Néel order the
two lowest states of the finite-size spectrum are a total-
symmetric singlet and a triplet of momentum �p, p�. This
phase is clearly expected to occur for sufficiently small
J2�J1. Analogously, in the large J2�J1 limit, the two
sublattices decouple and a collinear state characterized by
ferromagnetic stripes, staggered along the direction or-
thogonal to the stripe, is believed to prevail [18]. In this
case, the symmetry breaking implies that four classes of
states with different spatial symmetries become degener-
ate: the lowest representatives of these families are an
s-wave and a d-wave singlet at zero momentum and two
triplets at momenta �0, p� and �p, 0�. Therefore the tran-
sition between these two ordered phases implies that, by
increasing J2�J1, the �p, p� triplet should acquire a gap
while the d-wave singlet and the �0, p� and �p, 0� triplets
should collapse onto the GS. The low-energy spectrum is
shown in Fig. 2, suggesting that the reshuffling of the low-
est energy levels in the system occurs at least in two steps:
first the triplet levels lift, leaving room for a nonmagnetic
phase with a finite triplet gap, and then the d-wave singlet
collapses.

In principle, either a homogeneous spin liquid or a
VB crystal with some broken spatial symmetry is com-
patible with a triplet gap in the excitation spectrum. In-
deed, there are several proposals that the GS for J2�J1 �
0.5 may be spontaneously dimerized [10,19,20] with bro-
ken translation-rotation symmetry (columnar VB state) as
it is likely to happen in a generalization of the present
model [6]. Alternatively, a plaquette VB state [21,22] with
broken translational symmetry but preserving rotational

FIG. 2. Lowest energy states with given quantum numbers ref-
erenced to the GS energy: Singlet zero momentum s-wave
(empty dot) and d-wave (cross), singlet at momentum �0, p�
(empty square), singlet at momentum �p , p� (empty triangle),
triplets at momentum �p , p� s-wave (full dot), and at momen-
tum �0, p� (full square).
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symmetry may be stabilized. Note that a plaquette VB
state would imply the degeneracy of four singlet states
at momenta �0, 0�, �p, 0�, �0, p�, and (p, p), while a
columnar VB state [10,19,20] would result from the mix-
ing of four singlets with different quantum numbers: two
translationally invariant s-wave and d-wave states and the
two singlets at momenta �p, 0� and �0, p�. The plaque-
tte scenario recently proposed [21,22] turns out to be very
unlikely in this model because the lowest singlet of mo-
mentum �p, p� lies very high in energy at all the couplings
we have investigated. The presence of a d-wave singlet in
the singlet-triplet gap, instead, has been also evidenced in
the regime of strong frustration of the J1-J2 model on the
1�5-depleted square lattice, where the ground state is be-
lieved to be spin liquid [23]. On the other hand, on the
basis of these ED data, it is clearly impossible to establish
whether the GS is dimerized or disordered.

In order to clarify this issue we have extended the calcu-
lation to much larger system size, by also employing a few
Lanczos iterations over the starting variational WF. The
stochastically implemented Lanczos technique is a new
QMC method with very good convergence properties when
the initial WF well represents the actual GS [16]. This ac-
curacy can be confirmed a priori even on large size, by
studying the variance s2 � ��Ĥ 2� 2 �Ĥ �2��J2

1 N of the
energy, the variance being smaller (zero) for a better (ex-
act) calculation. As shown in Fig. 3, also in the 10 3

10 cluster the variance as a function of J2�J1 behaves

FIG. 3. Upper panels: energy vs decreasing variance for the
p-BCS wave function with zero, one, and two Lanczos itera-
tions. ED and QMC [8] (full triangles) are shown for com-
parison. Lower panel: variance vs J2�J1. In all the plots:
N � 6 3 6 (dots) and N � 10 3 10 (squares).
097201-3
similarly to the 6 3 6 case, strongly suggesting that the
exceptional accuracy of the p-BCS wave function does not
decrease for larger sizes. This is also confirmed by the ex-
tremely well-behaved approach to the zero-variance limit
with few Lanczos iterations (shown in the same figure),
leading to an almost exact estimate of the GS energy even
for J2 � 0, when the accuracy is the lowest.

Of course, the accuracy in the energy does not neces-
sarily guarantee a corresponding accuracy in correlation
functions. However, in the strongly frustrated regime,
our approach is particularly reliable since the gap to the
first excitation belonging to the same subspace of our best
WF (with two Lanczos iterations) is bounded in all the
most plausible cases (columnar, plaquette, nondegenerate
singlet RVB) by the triplet gap (*0.1J1, [10,22]) and there-
fore is much larger than the estimated error in the total en-
ergy (�0.01J1, see top panel of Fig. 3). Indeed, as shown
in Fig. 4, the comparison of the magnetic structure factor
S�q� � �Ŝq ? Ŝ2q�, with the exact result gives a clear indi-
cation that correlation functions obtained by the variational
approach are essentially exact, indicating also the absence
of long-range Néel order [12]. This fact is particularly evi-
dent because for all the lattice sizes considered, S�p, p� is
slightly depressed by few Lanczos iterations, meaning that
the exact value of the magnetic structure factor is bounded
by the one of the p-BCS wave function, with sizable anti-
ferromagnetic correlations, but with no antiferromagnetic
long-range order. Remarkably, correlation functions are
smoothly depending on the energy variance, so that an es-
timate of the magnetic order parameter within �10% can

FIG. 4. S�q� for (from the lower to the upper curve) N �
6 3 6, 10 3 10, and 14 3 14. Variational estimate (empty
triangles), with one Lanczos iteration (empty squares), with
two Lanczos iterations (empty dots). Full dots: variance-
extrapolated values of S�p , p�; large empty circles: ED results.
Inset: size scaling of the variance-extrapolated order parameter
squared for J2�J1 � 0.5 (full dots) and J2 � 0 (empty dots,
Ref. [16]). The full triangle is the thermodynamic value for
J2 � 0 taken from Ref. [8].
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FIG. 5. Dimer-dimer correlation functions D
k,l
i,j obtained by

keeping fixed the position of the leftmost bond �i, j� (double
stick) and moving the bond �k, l� (single stick) along the in-
dicated patterns. d is the Manhattan distance. 6 3 6 (left),
10 3 10 (right); symbols as in Fig. 4.

be achieved also for J2 � 0, where our singlet WF is not
particularly accurate and the spectrum is gapless (see the
inset of Fig. 4).

In order to investigate the existence of long-range
dimerlike correlations, as in the columnar or the plaquette
VB state, we have calculated the dimer-dimer correlation
functions, D

k,l
i,j � �Ŝz

i Ŝz
j Ŝz

k Ŝz
l � 2 �Ŝz

i Ŝz
j ��Ŝz

kŜz
l �. In the

presence of a broken spatial symmetry, the latter should
converge to a finite value for large distance. This is clearly
ruled out by our results, shown in Fig. 5, with a very robust
indication of the liquid character of the GS for J2�J1 	 0.5,
which is correctly described by our variational approach.

A totally symmetric spin-liquid solution proposed for
this model in Ref. [4] was actually rather unexpected
after the work of Read and Sachdev [20], providing
arguments in favor of spontaneous dimerization. This
conclusion was supported by series expansion [10,19] and
QMC studies included the one done by two of us [22]. It
is clear, however, that it is very hard to reproduce a fully
symmetric spin liquid GS, with any technique, numeri-
cal or analytical, based on reference states explicitly
breaking some lattice symmetry [24]. We do not know
whether numerical methods and/or series expansions can
ever solve this controversial issue. However, for the time
being, we can safely state that in order to have something
different from a spin-liquid GS, one has necessarily to
improve the quality of our spin-liquid variational WF, e.g.,
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with small symmetry breaking terms; a possibility that
we have attempted (small dimerizations or plaquettelike
perturbations) without success. Indeed, this seems a very
difficult task due to the tiny energy range left (�1023J1
per site on the 6 3 6 lattice) by our variational WF.

In conclusion, the spin-liquid RVB ground state, origi-
nally proposed to explain high-Temperature superconduc-
tivity, is indeed very plausible for strongly frustrated spin
systems. We expect that the p-BCS resonating valence
bond wave function represents the generic variational state
for a spin-half spin liquid, once the pairing function fi,j
is exhaustively parametrized according to the symmetries
of the Hamiltonian. In particular, the p-BCS wave func-
tion can be easily extended to the case of topologically
frustrated lattices —such as the kagomé or the pyrochlore
lattices —as well as to frustrated models on the 1�5-
depleted square lattice.
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